Install SGLang-Diffusion#

You can install SGLang-Diffusion using one of the methods below.

Standard Installation (NVIDIA GPUs)#

Method 1: With pip or uv#

It is recommended to use uv for a faster installation:

pip install --upgrade pip
pip install uv
uv pip install "sglang[diffusion]" --prerelease=allow

Method 2: From source#

# Use the latest release branch
git clone https://github.com/sgl-project/sglang.git
cd sglang

# Install the Python packages
pip install --upgrade pip
pip install -e "python[diffusion]"

# With uv
uv pip install -e "python[diffusion]" --prerelease=allow

Method 3: Using Docker#

The Docker images are available on Docker Hub at lmsysorg/sglang, built from the Dockerfile. Replace <secret> below with your HuggingFace Hub token.

docker run --gpus all \
    --shm-size 32g \
    -p 30000:30000 \
    -v ~/.cache/huggingface:/root/.cache/huggingface \
    --env "HF_TOKEN=<secret>" \
    --ipc=host \
    lmsysorg/sglang:dev \
    zsh -c '\
        echo "Installing diffusion dependencies..." && \
        pip install -e "python[diffusion]" && \
        echo "Starting SGLang-Diffusion..." && \
        sglang generate \
            --model-path black-forest-labs/FLUX.1-dev \
            --prompt "A logo With Bold Large text: SGL Diffusion" \
            --save-output \
    '

Platform-Specific: ROCm (AMD GPUs)#

For AMD Instinct GPUs (e.g., MI300X), you can use the ROCm-enabled Docker image:

docker run --device=/dev/kfd --device=/dev/dri --ipc=host \
  -v ~/.cache/huggingface:/root/.cache/huggingface \
  --env HF_TOKEN=<secret> \
  lmsysorg/sglang:v0.5.5.post2-rocm700-mi30x \
  sglang generate --model-path black-forest-labs/FLUX.1-dev --prompt "A logo With Bold Large text: SGL Diffusion" --save-output

For detailed ROCm system configuration and installation from source, see AMD GPUs.

Platform-Specific: MUSA (Moore Threads GPUs)#

For Moore Threads GPUs (MTGPU) with the MUSA software stack:

# Clone the repository
git clone https://github.com/sgl-project/sglang.git
cd sglang

# Install the Python packages
pip install --upgrade pip
rm -f python/pyproject.toml && mv python/pyproject_other.toml python/pyproject.toml
pip install -e "python[all_musa]"

Quick test:

sglang generate --model-path black-forest-labs/FLUX.1-dev \
    --prompt "A logo With Bold Large text: SGL Diffusion" \
    --save-output